Серия «Занимательная физика»

431

Что такое энтропия и «тепловая смерть»?

Для начала давайте вспомним, что такое энергия. Возьмём самое простое "детское" определение: "Энергия – это способность тела выполнять работу".

Энергия бывает кинетической и потенциальной.

Кинетическая энергия – это энергия движения. Тут всё понятно – раз тело движется, значит, выполняет работу.

Потенциальная энергия – это энергия как бы спрятанная, «возможная». Она прячется в растянутой пружине или резинке, или в баллончике со сжатым газом, или внутри котла с горячей водой. Когда яблоко висит на ветке, оно не движется, но на него действует потенциальная энергия – энергия гравитации. Черенок переломится – и Земля притянет яблоко. Яблоко упадёт, совершив работу. Потенциальная энергия «высвободится», превратившись в энергию кинетическую – в энергию движения.

Выполняет какую-то работу висящее яблоко, или баллончик со сжатым газом, или котёл с горячей водой? Нет.

А теперь откроем один секрет. Физическим телам «не нравится», когда в них прячется потенциальная энергия. Они стремятся от неё избавиться!

Тело избавляется от накопленной потенциальной энергии...

Тело избавляется от накопленной потенциальной энергии...

Когда мы долго сидим на одном месте – например, во время урока, нам хочется потянуться, «размяться», побегать не перемене. То есть высвободить скопившуюся энергию! Если человек не будет этого делать, ему будет плохо! Он даже может заболеть. (Вот ещё почему «дистанционное обучение» вредно для детских организмов – не с кем побегать на переменке!)

Вот точно так же и всем физическим телам «хочется» высвободить скопившуюся в них потенциальную энергию. Переведём это «хочется» на язык физики:

Работа совершается только при снижении уровня потенциальной энергии.

Если бы нам не хотелось «потянуться», мы бы и не шевелились. Родился – и лежи себе на спине всю жизнь! Но нам хочется двигаться – высвобождать потенциальную энергию. Поэтому мы вертимся, ползаем, бегаем, играем, рисуем, строим города и запускаем космические корабли. Всё это – работа. И всё это возможно только потому, что снижается уровень потенциальной энергии.

Например. Почему стреляет пневматический пистолет? Потому что на поверхности Земли давление воздуха равно 1 атмосфере, а внутри газового баллончика – давление в 50 атмосфер. Нажимая на спуск, мы открываем клапан, газ под давлением 50 атмосфер стремится расшириться – и с силой выталкивает из ствола мешающую ему пулю. Пуля летит, выполняется работа.

А теперь представим себе, что мы решили выстрелить из этого же пистолета под водой, на глубине в полкилометра. Там давление равно как раз тем самым 50-ти атмосферам. Нажимаем на спуск, открываем клапан – и что? В баллончике 50 атмосфер, снаружи тоже 50 атмосфер... Пуля внутри ствола даже не шелохнётся. Работа не выполняется.

Повторим: работа выполняется только в том случае, когда происходит понижение уровня потенциальной энергии (в нашем примере – с отметки «50» до отметки «1»). А если уровню потенциальной энергии понижаться некуда, работа и не происходит.

Физический закон, действие которого мы только что описали, называется «Второе начало термодинамики».

Именно по этому закону падают вниз предметы, текут с гор реки и ручьи, остывает кастрюля с горячим супом, «садятся» батарейки. Уровень их потенциальной энергии понижается. Камню, лежащему на склоне горы, для того чтобы выполнить работу (скатиться), нужны два уровня, то есть разность высоты. А вверх по склону он ни за что не покатится!

Из-за второго начала термодинамики не потечёт вверх вода, не нагреется сама по себе кастрюля с борщом, не зарядится сама по себе батарейка. Увеличение потенциальной энергии «само по себе» в нашей Вселенной невозможно.

Сади Карно (1796–1832), военный инженер, автор работы "Размышления о движущей силе огня"

Сади Карно (1796–1832), военный инженер, автор работы "Размышления о движущей силе огня"

В 1824 году французский физик Сади Карно задумался над таким вопрос: а всю ли энергию мы можем превратить в работу?

Ну, например: топливо, сгорая, выделяет тепло, а двигатель превращает это тепло в механическую работу. Но сколько именно теплоты мы можем превратить в полезную работу? Всю?

Ответ оказался отрицательным. Какое бы топливо мы ни использовали, из каких бы материалов ни делали двигатель, как бы ни старались – даже в самом идеальном случае в полезную работу нам удастся преобразовать не больше 35% тепловой энергии! А куда же денется остальное? Попросту рассеется в пространстве – совершенно бесполезно...

В 1850 году немецкий физик Рудольф Клаузиус дополнил работу Карно и ввёл в науке новое понятие – «энтропия». Так он назвал ту самую бесполезную часть энергии, рассеивающуюся в пространстве.

Рудольф Клаузиус (1822–1888), физик-теоретик

Рудольф Клаузиус (1822–1888), физик-теоретик

Всякий раз, когда мы что-то делаем, помимо полезной энергии, совершающей работу, выделяется целая куча бесполезной энергии! Чтобы заварить чашку чая, мы кипятим целый чайник воды. Часть горячей воды используется, а остальная остывает... И так много раз!

Неумолимые математические формулы показывают: внутри замкнутой системы (скажем, нашей Вселенной) количество энтропии постоянно увеличивается, в то время как количество энергии остаётся неизменным...

Выяснив это, Клаузиус пришёл к очень грустному выводу: в будущем весь наш мир ожидает «тепловая смерть».

Вся существующая энергия рано или поздно будет «размазана» по Вселенной, как крохотный кусочек масла по огромному бутерброду – причём на том самом «одном уровне», из которого извлечь работу ни при каких обстоятельствах не выйдет! Прекратится всякая жизнь, любое движение, вся Вселенная окажется тёмной, мёртвой, скованной лютым холодом – безо всякой надежды на возрождение. Жутковатая картина, правда?

Энтропия – это как бы «антиэнергия», её полная противоположность. Там, где энергия творит, оживляет и созидает, энтропия разрушает, умерщвляет, уничтожает. То, что она отбирает, она отбирает навсегда и безвозвратно. Страшно?

Нам – да.

Когда люди узнали об этом, они были потрясены. Ещё бы, «наука доказала, что мир обречён!» Раньше люди верили в бессмертие (в бессмертие души, например), верили в то, что жизнь бесконечна. И вот – эта вера рухнула! Во всяком случае, серьёзно пошатнулась…

"Кончено". Открытка начала ХХ века

"Кончено". Открытка начала ХХ века

В конце XIX века вошло в моду движение «декадентов» (от французского слова «декаданс» – «падение», «разложение»). Декаденты считали, что, раз мир «заканчивается», то незачем думать о будущем, соблюдать приличия, стараться сделать жизнь лучше. В «декаденты» записывались поэты и писатели, философы и художники. Обычные люди тоже стали подражать декадентам. Возникла мода на мрачность и цинизм, «мода на смерть», мода на вызывающее и даже бесстыдное поведение.

Декаденты, они такие!..

Декаденты, они такие!..

Смысл этого явления великий русский писатель Ф.М. Достоевский выразил одной ёмкой фразой: «Если Бога нет – всё дозволено».

Но затем пришло спасение...

Что такое тепло?

Еще до Клаузиуса идею о существовании «бесполезной потери теплоты» высказал французский физик и математик Сади Карно. Однако сами его представления о природе тепла были очень далеки от истины. Сади Карно представлял тепло как невидимую и невесомую жидкость – «теплород», – перетекающую от одного тела к другому. Рудольф Клаузиус стал одним из основоположников современной теории тепла – молекулярно-кинетической. В ней полностью отвергался теплород, а возникновение тепла объяснялось быстрым или медленным движением мельчайших частиц вещества, то есть молекул.

Каждая молекула невообразимо мала и обладает крохотной массой. Тем не менее, как любое движущееся тело, она обладает кинетической энергией – помните, мы говорили об этом в самом начале?

Сталкиваясь в беспрестанном хаотическом движении с другими молекулами, наша молекула выполняет механическую работу – и именно эту работу мы уже воспринимаем в качестве температуры тела. Если молекулы движутся быстро – то температура выше, если молекулы движутся медленно – то температура ниже. Случай, когда молекулы вещества «остановятся совсем», физики назвали «абсолютным нулём». Это самая низкая температура, которая может существовать в нашей вселенной, и равняется она минус 273 градусам.

Чтобы понять, надо измерить

Но вот в чём дело. Молекул вещества очень много – не миллионы, не миллиарды, не триллионы – их триллионы триллионов даже в объёме чайной ложки! В стакане воды в секстиллион раз больше молекул, чем звёзд во всей нашей Галактике! Могут ли все они двигаться с одинаковой скоростью?

Нет, конечно же, не могут. Скорости и направления движения у всех молекул разные – а температура вещества определяется только «в среднем». Формулы для таких расчётов изучает особая наука – статистическая физика.

Почему эта наука особенная? Потому что математически описывает величины, связанные и не связанные между собой одновременно!

Бывает так, что связь существует только на очень большом, макроскопическом уровне. А на обыкновенном (то есть микроскопическом) – нет. Приведём простой пример.

В 1980 году в Москве проходили летние Олимпийские игры, а на торжественных церемониях открытия и закрытия зрители с восхищением наблюдали за огромными «живыми картинами» на центральной трибуне стадиона в Лужниках. Это был как бы экран размером 67х67 пикселей, только «пикселями» были люди – 4 с половиной тысячи человек. По сигналу режиссёра они поднимали разноцветные флажки.

Сможем ли мы, взяв отдельного человека из этой массовки, точно сказать – какая картинка показывается на трибуне в данный момент? Вот, скажем, волонтёр Петров поднял синий флажок. Какую он показывает картинку? Неизвестно. С другой стороны, глядя на общую картинку с олимпийским медвежонком Мишей, сможем мы точно сказать, какой флажок сейчас поднял волонтёр Петров? Тоже нет!

«Живая картинка» на церемонии закрытия Олимпийских игр. Мишка «моргнул», из глаза скатилась «слеза»

«Живая картинка» на церемонии закрытия Олимпийских игр. Мишка «моргнул», из глаза скатилась «слеза»

То же самое можно сказать о тепловых процессах. Мы можем взять стакан воды (макроскопический уровень) и измерить градусником его температуру – запросто! Но можем ли мы точно сказать, с какой скоростью движутся молекулы воды (микроскопический уровень) внутри этого стакана? Нет.

А если мы проследим за какой-то одной молекулой и измерим её скорость – сможем ли сказать, какая температура воды в нашем стакане? Опять нет. Вот и получается, что величины между собой связаны (температура зависит от скорости движения молекул), но... не связаны.

Кто такой демон Максвелла?

Далеко не всем в середине XIX века были понятны революционные для того времени идеи о движении молекул. Горячим сторонником молекулярно-кинетической теории тепла был физик Джеймс Максвелл. Для того, чтобы интересно и образно проиллюстрировать студентам связь между теплом и движением молекул, Максвелл придумал вот какой красивый и любопытный пример.

Джеймс Клерк Ма́ксвелл (1831–1879)

Джеймс Клерк Ма́ксвелл (1831–1879)

Предположим, что у нас есть сосуд с газом определённой температуры. Этот газ состоит из огромнейшего числа молекул, которые движутся (в точности по формулам статистической физики!) с разными скоростями и в разных направлениях. Разделим этот сосуд напополам перегородкой, а в перегородке сделаем маленькую дверцу, возле которой посадим маленького, но разумного, очень юркого и наблюдательного демона.

Отдадим демону вот какой приказ: в правую половину сосуда пропускать только те молекулы газа, которые движутся быстро, а в левую – только те молекулы, которые движутся медленно. В результате работы «демона Максвелла» в правой половине соберутся только более быстрые молекулы, а в левой – более медленные; тогда в правой половине сосуда (снова в точности по формулам статистической физики!) температура «сама по себе» станет выше, а в левой – напротив, ниже. Правая половина нагреется, левая охладится.

Если бы «демон Максвелла» на самом деле существовал и умел ловить и сортировать молекулы, он вполне смог бы поднять температуру в правой половине сосуда, не нарушив второе начало термодинамики. Вопрос лишь в том, может ли существовать такой демон!

Мы живём в XXI веке, вокруг всё больше и больше нанотехнологий, так что почему бы и не предположить, что будет создан такой вот крохотный робот-демон, сортирующий молекулы? Однако для работы ему будет нужна энергия. А она не берётся из ниоткуда – робота демона придётся «кормить».

В этом-то и загвоздка!.. Демон Максвелла – не часть замкнутой системы «сосуд с молекулами газа». Он отдельная, «внешняя» по отношению к сосуду система (хоть и сидит внутри). А по отношению к Вселенной он – часть замкнутой системы «Вселенная». И расходуемая им энергия, хоть и понижает энтропию сосуда с газом, но энтропию Вселенной отнюдь не понижает! А наоборот, повышает...

Значит, нужен такой демон, который будет внешним по отношению к Вселенной. Хм... А это может быть только... Ну, да, её Творец. Или – если не хотите Творца – другая вселенная, сообщающаяся с нашей по принципу «жизнь – смерть – жизнь». Как два пузыря – один сдувается, другой надувается...

Кстати, предположение про «пузыри» является вполне серьёзной научной гипотезой. А есть ещё и «многомировая интерпретация» – математическая модель, в которой вселенные даже и сосчитать невозможно: их бесконечность бесконечностей! (Что уж тут горевать об одной...)

Но интересно другое.

«Энтропии вопреки»

Физик Эрвин Шрёдингер (ага, тот, которого «кот»), автор интереснейшей книги «Что такое жизнь с точки зрения физики», внимательнейшим образом изучив этот вопрос, пришёл вот к какому выводу: «Жизнь – это работа специальным образом организованной системы по понижению собственной энтропии за счёт повышения энтропии окружающей среды».

Получается, что живые организмы – даже примитивные, микроскопические! – способны «перераспределять» энтропию, предотвращать свою деградацию, повышать сложность систем, перенаправлять потоки энергии.

Эрвин Рудольф Йозеф Александр Шрёдингер (1887–1961)

Эрвин Рудольф Йозеф Александр Шрёдингер (1887–1961)

Этой неожиданной теории существуют подтверждения – например, в геологии.

На сегодняшний день геологам известно около 5000 различных минералов (горных пород). Однако далеко не все горные породы, присутствующие на Земле, есть на безжизненных небесных телах – скажем, на Луне! Там нет и не может быть ни мела, ни мрамора, ни известняка, ни каменного угля... Почему?

Потому что эти минералы образовались из отложений живых организмов! 90% горных пород (!) на нашей планете возникли исключительно благодаря такому удивительному явлению, как жизнь!

Известняк, из которого мы строим красивые дома, когда-то был живым!

Известняк, из которого мы строим красивые дома, когда-то был живым!

Получается, жизнь действительно может многократно повышать сложность «системы в целом», уменьшая тем самым её энтропию, повышая «энергетический потенциал»!

Живая вселенная?

Одна из самых удивительных и спорных научных теорий на сегодняшний день – это теория о существовании «вселенского разума». У неё есть очень много сторонников – но и очень много противников.

Сторонники говорят, что наш мир, состоящий из огромнейшего количества взаимосвязанных элементов – скажем, соединённых гравитационным полем звёзд и галактик, состоящих, в свою очередь, из соединённых атомными и квантовым полями элементарных частиц, – рано или поздно, подобно гигантскому мозгу, был должен обрести некую форму сознания – или хотя бы какое-то его подобие.

Это не значит, что вселенная разумна в человеческом понимании – в конце концов мы и сами ещё толком не понимаем, что же такое «разумность» или «сознание». Однако такой вот «супермозг» вселенского масштаба должен рано или поздно осознать свою смертность – неизбежный конец из-за той самой энтропии и «тепловой смерти». А значит, у него, как у жизни, могла возникнуть способность этому противостоять...

Больше напоминает фантастику? Согласны. Но когда учёные говорят о малоизученных и непростых вещах, они вынуждены «заступать» в область фантазии и воображения.

Посмотрите – структура нашей вселенной очень напоминает структуру нервной клетки! Что это? Случайное совпадение? Или нет? Посмотрите-посмотрите!

Слева – структура клетки головного мозга человека. Справа – структура Вселенной в масштабе 31 мегапарсек в 1 сантиметре

Слева – структура клетки головного мозга человека. Справа – структура Вселенной в масштабе 31 мегапарсек в 1 сантиметре

Красиво? Снова вспоминаем Фёдора Михайловича: «Мир спасёт красота»... А хотите – вот «мнение специалиста»:

«Вселенная – это не гигантская машина, а гигантская мысль»

Физик-теоретик Джеймс Джинс

Это он со своей семьёй. Как думаете, прав он или нет?

Это была немного переделанная статья из журнала «Лучик»...

Внимание! Сейчас можно оформить ПОДПИСКУ на журнал «Лучик» со СКИДКОЙ 20%. Акция продлится до 17 ноября. Ссылка на онлайн подписку: https://podpiska.pochta.ru/press/П5044

Также подписку вы можете оформить в вашем почтовом отделении.

Свежие и архивные номера можно купить на Вайлдберриз и в Озоне.

Скачать БЕСПЛАТНО номера «Лучика» за 22-24 годы можно здесь: https://lychik-school.ru/view

Показать полностью 14
1069
Популярная наука
Серия Занимательная физика

Что известно о шаровой молнии?2

Шаровую молнию учёные (особенно физики) ужасно не любят.

Шаровая молния влетает в дом гравюра 1901 года

Шаровая молния влетает в дом гравюра 1901 года

Почему? Потому что в науке чётко прописано, что можно, а чего нельзя. Любое явление, эффект или объект (а также их свойства) для «научности» должны быть:

а) чётко и неоспоримо зафиксированы в природе;

б) смоделированы в лаборатории в ходе опытов и экспериментов;

в) описаны теоретически с помощью формул и чисел;

г) полученные формулы и числа должны (хотя бы «чуть-чуть») совпадать с теми, которые были зафиксированы в природе и во время экспериментов.

Шаровая молния атакует церковь в Уидекомбе в 1638 году. Старинная гравюра

Шаровая молния атакует церковь в Уидекомбе в 1638 году. Старинная гравюра

По таким вот строгим критериям учёные отбрасывают как ненаучные самые разные вещи и явления. И вечный двигатель, и НЛО, и привидения. Но вот шаровую молнию отбросить не получается, потому что есть не только многочисленные рассказы очевидцев, записи на киноплёнку и видеозаписи, но и экспертные расследования, и даже самая настоящая (вот уж «научнее не бывает») спектрограмма.

Этот случай произошёл не так давно, в 2012 году – китайские учёные на Тибетском плато изучали обыкновенные молнии – в природных условиях – с помощью различных приборов, в том числе спектрометров. Неожиданно на видео (которое до сих пор засекречено) и на запись спектрографа (которая опубликована) попала самая настоящая шаровая молния. По описаниям очевидцев – серьёзных учёных! – «сразу же после удара обычной молнии вдруг появился сияющий белый шар, размерами приблизительно около 5 метров. Он проплыл горизонтально расстояние примерно в 10 метров, после чего сменил цвет на красный и начал подниматься вверх».

Спектр шаровой молнии полученный китайскими учеными в 2012 году

Спектр шаровой молнии полученный китайскими учеными в 2012 году

И вот тут у учёных начинаются большие проблемы – очень серьёзные! Потому что если пункт «А» («доказанно существует и наблюдается в природе») для шаровой молнии выполняется, то остальные три – нет! Получить шаровую молнию в лаборатории учёным пока удавалось только в научно-фантастической литературе (например, «Замок ведьм» Александра Беляева). Более того – пока не удалось создать и более-менее убедительную теорию для этого явления, хотя этим занимались крупнейшие учёные мира (скажем, Пётр Леонидович Капица, знаменитый физик, лауреат Нобелевской премии). И вот из-за этого учёные шаровую молнию не любят. Учёные вообще не любят вещи, которые не могут объяснить – хоть студентам, хоть журналистам, хоть начальству. «Как летать с Земли до звёзд, как поймать лису за хвост, как из камня сделать пар» – могут. А вот с шаровой молнией – беда...

Каковы её свойства?

Что на текущий момент учёным удалось узнать достаточно достоверно из наблюдений? Довольно многое:

  • Размеры шаровой молнии – от теннисного мячика до шара диаметром в несколько метров.

  • Время существования – от нескольких секунд до нескольких минут.

  • Цвет – самый разный (белый, жёлтый, синий, красный), иногда постоянно изменяющийся.

  • Плотность – меньше воздуха.

  • «Смерть» – иногда просто растворяется в воздухе, иногда взрывается, причиняя серьёзные разрушения

  • Взаимодействие с предметами – иногда плавит или поджигает, иногда отбрасывает в сторону на много метров, иногда проходит насквозь.

Какова энергия, содержащаяся внутри шаровой молнии? В 1936 году английский физик Брайан Гудлет привёл совершенно уникальный случай: средних размеров (с грейпфрут) шаровая молния залетела в небольшой бочонок с водой, стоявший на кухне. Вода, только что принесённая из колодца, немедленно начала кипеть. Даже спустя 20 минут после происшествия вода была настолько горячей, что в неё нельзя было опустить руку. Поскольку физику было известно количество воды и её изначальная температура, то рассчитать энергию «по школьным формулам» не составило никакого труда: примерно 100 киловатт-часов, или 360 мегаджоулей на 1 килограмм массы. Это очень много. Достаточно сказать, что шар такого же размера, наполненный нитроглицерином (очень мощным взрывчатым веществом), содержит примерно в четыре раза меньше энергии...

Что касается взаимодействия с веществом – то тут всё ещё загадочнее. В том же самом наблюдении Гудлета сообщается, что шаровая молния, прежде чем залететь в бочонок с водой, пережгла металлические телеграфные провода и сильно опалила деревянную оконную раму. Температура плавления стали, из которой сделана проволока, в среднем составляет +1400 градусов. Значит, молния была примерно такой же температуры? Но тогда она должна была не «опалить» деревянную раму, а поджечь. Странно... Однако всё-таки в этом случае молния «как и положено» взаимодействует с веществом: плавит металл, поджигает древесину, кипятит воду. Среди других примеров «взаимодействия» есть и более «агрессивные»: шаровая молния может при взрыве перевернуть многотонный трактор, выломать в помещении все двери, сломать, как спичку, толстое бревно...

Но были и другие случаи! Скажем, «случай Дженнисона», описанный в 1963 году. Или «случай Аккуратова», описанный в 1946 году. И тут, и там шаровая молния каким-то неизвестным образом сумела пройти сквозь металлическую толстую стенку и попасть внутрь самолёта, летящего на большой высоте! При этом впоследствии, во время расследования, на стенках не было обнаружено никаких – ни проплавленных, ни просверленных, ни «прогрызенных» отверстий. Умение проходить сквозь стены – про такое знает квантовая физика (физики называют это «туннельный эффект»), но чтобы такое происходило в «большом» макромире?! А наблюдения лётчиков (людей психологически подготовленных и вовсе не склонных фантазировать) говорят обратное – сперва молния была снаружи самолёта, пролетела вдоль крыла к кабине, а потом вдруг оказалась внутри (где устроила пожар и чуть не убила радиста).

Обложка журнала Техника Молодежи 1982 год с рассказом о случае 1946 года

Обложка журнала Техника Молодежи 1982 год с рассказом о случае 1946 года

Одна ли она?

Удивление вызывает «разнообразие» поведения шаровой молнии при взрыве. Если мы, допустим, возьмём две тротиловые шашки одной и той же массы, то и взорваться они должны с одной и той же силой. А тут при наблюдениях всё совершенно иначе – в одном случае шаровая молния, попав в деревянную мачту корабля, «разносит её в щепки и поджигает весь корабль целиком». А в другом – залетев под кресло радиста в самолёте, взрывается, разносит в куски рацию, плавит (!) металлическое основание сиденья, но сам радист при этом каким-то чудом остаётся цел и невредим.

Столько же вопросов вызывает поведение шаровой молнии при контакте с металлическими объектами или электрическими проводами. Обычная молния, благодаря своей электрической природе, как известно, «любит» именно металлические предметы (на этом основан принцип работы громоотводов). В мультфильме «Ничуть не страшно» мальчики Коля и Юра спасаются от шаровой молнии именно благодаря свисающему со столба электрическому проводу.

Но вот с настоящей шаровой молнией – не вполне так. Иногда она действительно движется в сторону электрических проводов или антенн, а иногда – проплывает мимо них абсолютно «равнодушно», и даже наоборот:

...В нашей палатке – а она была закрыта – лежали радиостанция, карабины и альпенштоки. Но шаровая молния не тронула ни одного металлического предмета, казалось, она «охотилась» только на людей...

Кстати, «вдогоночку». А вообще – насколько и чем опасна шаровая молния для человека? И здесь данные тоже есть самые противоречивые. Многим знаком хрестоматийный случай гибели в Петербурге в 1753 году от удара шаровой молнией физика Георга Рихмана, друга Ломоносова. На лбу учёного нашли «всего лишь красное пятнышко величиной с мелкую монету». Но вот упомянутый нами только что случай, произошедший с группой альпинистов на Северном Кавказе в 1978 году – там шаровая молния «размером с мячик для тенниса» оставляла на теле «страшные глубокие раны, буквально выдирая мясо до костей» (тогда 4 человека получили серьёзные травмы и остались инвалидами, а один погиб).

Гибель Георга Рихмана от шаровой молнии в 1753 году

Гибель Георга Рихмана от шаровой молнии в 1753 году

Именно поэтому многие исследователи всерьёз задаются вопросом – а действительно ли мы имеем дело с одним и тем же явлением? Реагирует шаровая молния на металл – или НЕ реагирует? Прожигает предметы – или проходит их НАСКВОЗЬ? Какой запах остаётся в помещении после взрыва шаровой молнии – запах ОЗОНА или запах СЕРЫ (да-да, и здесь показания свидетелей тоже бывают самые разные)? Или шаровых молний вообще не одна – а две (или три, или даже больше?). Схожих внешне, но обладающих совершенно разными свойствами?

А молния ли это?

«Шаровая молния» – устоявшийся, привычный термин. И в самом деле большинство свидетельств описывают появление шаровой молнии именно во время грозы, то есть как бы подразумевают «родство» молнии обыкновенной и молнии шаровой. Однако «большинство» – совершенно не значит «все». Возьмём тот же самый случай в самолёте, произошедший в 1946 году – тогда шаровая молния проникла в самолёт зимой, при забортной температуре минус пятнадцать градусов, и никаких признаков грозы не наблюдалось на сотни километров вокруг! Но тем не менее – шаровая молния была, её прекрасно видели второй пилот и оба штурмана...

Второй момент. Обычная молния – это раскалённая добела плазма с температурой порядка 30 тысяч градусов, здесь физики друг с другом не спорят. Но и гаснет («высвечивается») обычная молния, как вы знаете, очень быстро. Шаровая же молния может существовать длительное время – несколько десятков секунд, а то и несколько минут! Учёным очень хорошо знакомо такое явление, как «высвечивание» плазменного «огненного шара» при взрыве ядерной или водородной бомбы. Ещё академик Капица справедливо указывал – если огненный шар диаметром 150 метров высвечивается за 10 секунд, тогда «плазменная» шаровая молния диаметром 10 сантиметров должна высветиться всего лишь за сотую долю секунды! А закон сохранения энергии никто не отменял – если вытащить из детской игрушки батарейку, она перестанет работать. А вот шаровая молния, выходит, «в батарейке не нуждается»...

Кстати, единственное (пока) исследование шаровой молнии спектрометром в 2012 году показало, что в её составе есть железо, кремний, кальций, кислород, алюминий, фосфор и титан. То есть на спектр «обыкновенной» молнии спектр шаровой молнии решительно не похож – она «из другого вещества». Так что весьма вероятно, что «шаровая молния» – это вовсе не «молния»... Но тогда что это?

Возможные гипотезы.

Почему шаровая молния круглая? Скорее всего, по той же самой причине, почему круглую форму приобретают капли воды в невесомости. По той же самой причине, почему при взрыве атомной бомбы образуется плазменный шар (а не куб и не пирамидка). Шаровая молния – просто по законам физики – как бы «стремится» тратить как можно меньше энергии на поддержание собственной формы, а потому и превращается в плавающую в воздухе шарообразную «каплю». Но... это только одно из многих объяснений.

Почему летает? Вот уж точно не потому, почему летает воздушный шар. Шар, наполненный горячим воздухом (или состоящий из раскалённого вещества, как при взрыве атомной бомбы), по тем же самым законам физики обязан полететь – но полететь строго вверх! Как пузырёк воздуха внутри открытой бутылки с газированной водой. А движение шаровой молнии может быть очень сложным – она может висеть неподвижно, подниматься, опускаться, двигаться быстрее или медленнее, причём «сама по себе», безо всякого там «ветра». Движение шаровой молнии во время трагедии 1978 года очевидец описывал так:

…Странный это был визитёр. Казалось, он сознательно и злобно, методически, соблюдая одному ему известную очерёдность, раз за разом проникал в наши спальные мешки и жёг нас, предавая страшной пытке...

Как устроена? Самая сложная часть вопроса. Все существующие теории (и их создателей) можно разделить на несколько больших групп:

Группа 1 – «иллюзионисты»: Шаровая молния – это своего рода устойчивая галлюцинация, вызванная воздействием электромагнитных волн на человеческий мозг. Так легче всего объяснить, скажем, «прохождение шаровой молнии сквозь стены». Или тот же случай с альпинистами в 1978 году объясняется тем, что спортсмены, «загипнотизированные» галлюцинацией, сами себе наносили раны... Минусы таких теорий: галлюцинации не могут плавить стекло и железо, а также переворачивать трактора и разносить в щепки корабельные мачты.

Группа 2 – «традиционалисты»: Шаровая молния – это устойчивый объект шарообразной формы, наполненный неизвестным науке веществом. Сам объект может быть устроен по-разному – и как некая «губка» из плазмы, и как некий быстро вращающийся «вихрь», переносящий раскалённое содержимое. Здесь минус – обычный закон сохранения энергии: из такого объекта энергия должна «перетекать» в окружающую среду, причём очень быстро. Да и сквозь стены такой пройти уже не сумеет.

Группа 3 – «волновики»: Шаровая молния – это особая стоячая электромагнитная волна (математики и физики называют такие удивительные волны-одиночки «солитонами»), которая и подпитывает энергией «снаружи» сгусток плазмы – «резонансную область». Минусы здесь – наблюдаемые явления, тот же «опыт Гудлета». Такая стоячая волна никаким образом не смогла бы вскипятить бочонок с водой (это противоречит всем законам физики сразу). Ну и взрыв такого «резонанса» по расчётам – просто хлопок воздушного шарика. Разнести на куски прочный предмет он не способен.

Группа 4 – «пространственники»: Шаровая молния – это результат «прокола» нашего пространства-времени, как бы проникновения в нашу вселенную другой вселенной. Представьте себе шар или цилиндр, который проходит сквозь тонкий лист бумаги – на листе «из ниоткуда» возникает точка, которая превращается в круг, какое-то время «живёт» на листе, а затем снова исчезает в никуда. Взрыв шаровой молнии – результат действия силового поля, возникающего на границе тех самых разных вселенных. Минусы – столкновение двух вселенных, по идее, должно не то что бочонок воды вскипятить, а как минимум пару галактик разнести в клочья... Но... кто знает?

Группа 5 – «биологи»: Шаровая молния – это ни на что не похожая и крайне редко наблюдаемая атмосферная форма жизни (у некоторых исследователей – даже разумной жизни). Эта жизнь питается электричеством или электромагнитными волнами (как «волновики» в одноимённом фантастическом рассказе Фредерика Брауна), но при определённых обстоятельствах может стать видимой для людей и взаимодействовать с «обыкновенной» материей. Этакий вариант рассказа Виктора Драгунского «Он живой и светится», только для взрослых...

Кстати, вам какая теория «устройства шаровой молнии» нравится больше? В любом случае, это явление природы, до сих пор учёными не разгаданное...

Друзья, на сайте «Почты России» сейчас можно выписать журнал «Лучик» со скидкой.

Купить «Лучик» можно на «Вайлдберриз» и в «Озоне».

Показать полностью 8
961
Наука | Научпоп
Серия Занимательная физика

Сколько весит пустота? Рассказывает журнал «Лучик»

Мы называем «пустой» банку, из которой съедено всё варенье. Но с точки зрения физики она не пустая. В ней есть воздух, и этот воздух сколько-то весит. А если откачать из этой банки весь воздух и вообще всё-всё-всё, чтобы внутри остался абсолютный вакуум? Что тогда? Ведь вакуум ничего не весит?

Как бы не так...

Давайте вспомним, что существуют две физики, причём очень непохожие друг на друга – классическая физика (та самая, которую изучают в школе) и квантовая физика.

Что будет, если мы разгоним до сверхбольшой скорости две малые элементарные частицы, скажем, два электрона, а потом столкнём их друг с другом? С ними ничего не случится, они останутся такими же, как были. Но при столкновении родится несколько новых элементарных частиц! Откуда? Из ниоткуда!

Сколько именно частиц родится и каких? А это зависит только от скорости электронов. Чем она будет выше, чем ближе она будет к скорости света в вакууме (примерно 300 000 километров в секунду), тем больше частиц вещества будет рождено при столкновении. И в теории при столкновении всего лишь двух крохотных электронов может родиться миллион частиц. Миллиард. Квадриллион. Из столкновения двух электронов может родиться целая вселенная!

Поверить в такое «просто так», на интуитивном уровне, не получится. Тем не менее, так оно и есть.

Но может быть и по-другому. Допустим, летят друг другу навстречу электрон и другая элементарная частица – позитрон. Сталкиваются – и... Исчезают! Мы видим яркую вспышку – при столкновении рождаются две частицы света, два фотона. А сами электрон и позитрон исчезают в никуда, аннигилируют, как говорят учёные. Слово «аннигиляция» происходит от латинского «нигиль», то есть «ничто». От электронов не останется никаких осколков или обломков – они именно исчезнут. Как в сказке.

Что же разделяет классическую физику и квантовую? Классическая физика – это физика «большого мира», макромира. А квантовая физика – это физика микромира, мира, в котором всё вокруг немыслимо маленького размера, мира, в котором все события происходят за невообразимо короткое время, мира, в котором скорости движения запредельно огромны.

Классическую физику можно представить в виде куклы-матрёшки: внутри самой большой матрёшки спрятана матрёшка поменьше, потом ещё поменьше, и так далее – но по сути у всех этих «матрёшек» свойства одинаковы, они подчиняются одним и тем же законам. Например, закону сохранения энергии: «энергия не возникает из ниоткуда и не исчезает в никуда». Ну, или «из ничего не выйдет ничего».

А вот квантовая физика – совершенно иное. И очень многие законы «нормальной» физики в квантовой физике не работают или работают, но совсем не так... В частности, в квантовой физике пустоту можно взвесить!

Во поле, во тензорном...

Чтобы взвесить пустоту, сперва немножко подготовимся. Начнём вот с чего. А знаете ли вы, что такое «поле»? В научном смысле? В физике, в математике? В этом нет ничего сложного: полем называется какой-то объект, каждой точке которого приписано определённое число. Возьмём, например, кусочек листа из тетради в клетку, и в каждой клеточке напишем число.

Такая штука называется "скалярное поле"

Такая штука называется "скалярное поле"

Чем-то напоминает поле для какой-то настольной игры, правда? Вот то, что мы сейчас нарисовали, и называется полем. Более научно – скалярным полем. Слово «скаляр» происходит от латинского слова «скала», то есть «лестница» (отсюда же наше слово «шкала» – на линейке, на термометре и так далее).

А если мы в каждой клеточке не напишем число, а нарисуем стрелочку-направление? Или, как любят говорить учёные, «вектор» (по-латыни слово «вектор» буквально означает «носильщик», «транспортировщик»)? Что у нас получится – тоже поле? Совершенно верно, это тоже поле. Только уже не скалярное, а векторное.

А это уже векторное поле

А это уже векторное поле

А если мы в каждую клеточку листа «впихнём» какой-нибудь сложный объект? Скажем, у математиков и физиков большой любовью пользуются «суперчисла», которые называются «матрицы» и «тензоры». Что если мы впишем в каждую клетку матрицу или тензор? Что у нас получится? Да тоже поле. С матрицами – матричное поле. С тензорами – тензорное поле. Всё как в деревне: сеем пшеницу – будет пшеничное поле. Сеем картошку – картофельное. Сеем рис – рисовое. Так что ничего сложного!

А теперь магнитное!

Само собой, реальные физические поля – в отличие от тетрадного листа – никаких чисел или векторов нам не показывают, потому что они невидимы. Тем не менее, в каждой точке поля существует некая величина (скажем, сила), которую можно обнаружить, увидеть и даже измерить. Скажем, собрались вы искупаться в ванной. А чтобы было весело и не скучно, взяли с собой резиновый мячик (или другую маленькую игрушку) и пустую пластиковую бутылку. Наполняем бутылку, потом под водой резко сжимаем её – и любуемся, как под действием абсолютно невидимой водяной струи мячик вдруг «сам по себе» отпрыгивает на другой край ванной! Невидимая под водой струя – это грубый, но наглядный пример того самого поля (силового поля из фантастических книжек): в каждой точке внутри ванной каждая крохотная частичка воды движется с определённой скоростью, то есть обладает импульсом, силой (эту силу можно даже измерить и написать «в клеточке» на бумажке). Снаружи мы этого не видим, но брошенный в ванну мячик под действием множества таких сил начинает двигаться!

Но... Почему мы назвали этот пример «грубым»? Потому что – вы сами прекрасно это понимаете! – мячик движется под действием потока воды, в общем случае – какого-то вещества. Если мы вместе с мячиком и пластиковой бутылкой вдруг перенесёмся в космическое пространство (где нет ни воды, ни воздуха, где царит абсолютная пустота, то есть вакуум), то «погонять» мячик у нас уже не выйдет – сколько мы ни будем сжимать-разжимать бутылку, игрушка даже с места не сдвинется. Потому что вещества вокруг нет!

А вот настоящее физическое поле – дело другое, ему вещество совершенно не требуется! Скажем, магнитное поле. Самый обыкновенный магнитик для холодильника будет прекрасно работать и в воде, и в воздухе, и в вакууме космоса! Потому что магнитному полю никакое вещество, никакое «рабочее тело» не требуется. Как такое может быть, как можно действовать «сквозь абсолютное ничто» – об этом немного погодя, хорошо?

Итак, магнитное поле – его нельзя увидеть, нельзя услышать, невозможно потрогать или понюхать. Тем не менее, оно есть, оно реально, оно обладает силой! Достаточно поднести к магниту гвоздь, ключ или другой металлический предмет – и вы сразу же почувствуете ту самую силу. А мощный магнит вообще может вырвать металлический предмет у человека из рук или даже поднять настоящий автомобиль!

Проведём простой классический опыт, который много раз был описан в учебниках: насыплем на бумажный лист горсть железных опилок и поднесём с другой стороны магнит. Опилки тут же «нарисуют картинку», вытянутся в тонкие линии – то есть соберутся вдоль силовых линий магнитного поля.

Силовые линии магнитного поля видны благодаря железным опилкам

Силовые линии магнитного поля видны благодаря железным опилкам

Мы не можем увидеть само магнитное поле, но можем видеть направление его силы, его воображаемые стрелочки-векторы. Так что магнитное поле – да, абсолютно правильно, это векторное поле, если вы уже сами об этом догадались, то просто молодцы!

Как устроен атом?

Когда я пошёл в младшую школу, на рукаве моей формы был шеврон – красный, с раскрытой книгой и солнышком. А когда перешёл из младшей в среднюю, шевроны у нас стали другими – синими, а на фоне солнышка появился какой-то странный «цветочек». Учительница быстро объяснила нам, что это никакой не цветочек, а атом – в центре атомное ядро, вокруг которого по орбитам летают электроны.

Шевроны (нарукавные нашивки) старой школьной формы

Шевроны (нарукавные нашивки) старой школьной формы

Между прочим, во многих книгах так атомы изображают до сих пор – с шариками-электронами, которые вращаются вокруг ядра по орбитам, в точности как планеты вокруг Солнца.

Это не очень правильная картинка (с точки зрения современной науки), но зато простая, понятная и наглядная, так что мы воспользуемся именно ей. Итак, каждый атом содержит центральное ядро, вокруг которого летают маленькие отрицательные электроны. Самый простой атом – это атом водорода: у него всего лишь один отрицательный («-») электрон, и в ядре всего лишь один положительный («+») протон.

Модель атома водорода

Модель атома водорода

Глядя на эту картинку, физики уже давно задались вопросом: а какая же сила заставляет электрон никуда не улетать, а вращаться вокруг протона? Земля вращается вокруг Солнца благодаря притяжению, гравитации. Может быть, и электрон тоже притягивается к протону гравитацией? Расчёты сразу же показали – нет, этого не может быть. Значит, тут работает какая-то другая сила. А какая?

Нетрудно сообразить – это сила магнитная, точнее, электромагнитная! В магните «минус» всегда притягивается к «плюсу», верно? Вот и «минусовый» (то есть отрицательно заряженный) электрон точно так же притягивается к «плюсовому» (положительно заряженному) протону.

Та же самая модель атома водорода

Та же самая модель атома водорода

А это означает, что между электроном и протоном, то есть ядром атома, существует электромагнитное поле. С точки зрения школьной, то есть классической, физики электромагнитное поле ни в каком вещественном «носителе» не нуждается – оно просто существует, и баста! Однако, как мы уже говорили, с точки зрения «другой» физики, то есть квантовой, «всё всегда не так».

В квантовой физике для того, чтобы существовало поле, обязательно нужна некая элементарная частица, которую учёные называют калибровочный бозон... А расчёты показали, что калибровочный бозон электромагнитного поля внутри атома физикам давно известен – это уже упоминавшийся нами квант электромагнитного излучения, «частица света», то есть фотон!

Необыкновенный настольный теннис

С точки зрения расчётов и формул квантовой физики электрон «привязан» к ядру потому, что испускает фотон, который летит к протону и поглощается. Затем протон, в свою очередь, испускает фотон, который летит к электрону и тоже поглощается. Если бы этого фотона не существовало, то атом бы развалился, рассыпался на составные части.

Это как будто игра двух детей в настольный теннис – играть в эту игру можно только если есть мячик. Без мячика в теннис не поиграешь... В смысле, если протон и электрон не будут постоянно «играть в теннис» фотоном, то не будет и атома...

Но – и тут многие учёные схватились за головы! – при этом нарушается чуть ли не самый главный закон физики, а именно закон сохранения энергии. С точки зрения этого закона фотон не может испуститься «сам по себе», для этого нужна энергия извне, «толчок», «пинок». А никакого поступления энергии снаружи нет. А атом водорода спокойно себе существует.

В итоге физики пришли вот к какому выводу: протон и электрон обмениваются фотоном с немыслимой скоростью. Всего за одну секунду «мячик»-фотон перелетает от одного «игрока» к другому триллион миллиардов раз (цифрами: 1 000 000 000 000 000 000 000).

И вот в масштабах такого микроскопически малого времени начинают изо всех сил работать законы квантовой механики – в таких случаях закон сохранения... не работает! Если быть совсем-совсем точным, то работает, но уже «немножко не так», «с ошибками». Результатом этих «ошибок» и является рождение «из ничего» фотона. Физикам эта особенность показалась настолько примечательной, что такие фотоны (и вообще такие частицы) стали называть виртуальными.

Что такое «виртуальный»?

Слово «виртуальный» вам наверняка знакомо. Изначально слово «виртуальный» означало «действующий», «сильный», «способный произвести эффект», оно происходит от латинского слова «вир» – то есть «мужчина». Но уже в XV веке это слово приобрело другой оттенок – слово «виртуальный» стало обозначать «нечто, производящее какой-то эффект, но при этом не существующее в действительности».

Физики пользуются словом «виртуальный» уже почти 100 лет, то есть с 1924 года. Внутри атома водорода происходит постоянный обмен виртуальными фотонами – именно благодаря этому существует электромагнитное поле, и электрон «не убегает» от атомного ядра...

Пустота превращается... в квантовую пустоту!

Но если такие виртуальные частицы существуют внутри атома, – рассудили учёные, – то почему бы им не существовать и вообще везде? Ведь тогда получается, что тот самый вакуум является «абсолютной пустотой» только с точки зрения классической физики. А с точки зрения квантовой он совсем не пуст! В каждой его точке постоянно рождаются пары виртуальных частиц и античастиц – например, электрон и позитрон.

Эта пара частиц рождается «из ничего», какое-то время «живёт», а затем сталкивается друг с другом и исчезает – аннигилирует! – «в никуда». Без выделения энергии в окружающую среду. Этот совершенно невообразимый бурлящий «коктейль» из виртуальных частиц назвали квантовым вакуумом.

Рождение и аннигиляция виртуальной пары частиц в квантовом вакууме

Рождение и аннигиляция виртуальной пары частиц в квантовом вакууме

Квантовый вакуум можно сравнить со спальней в детском лагере. Тихий час, детишки из младшего отряда мирно спят, закрыв глазки и укрывшись одеялками; тут вожатую срочно вызывают к начальнику, она уходит... Немедленно начинается жуткий тарарам, беготня, визг! Кто-то прыгает на матрасе, как на батуте, кто-то дерётся подушками, кто-то, завернувшись в простыню, изображает привидение. Но вот на тропинке появилась вожатая. «Вожатка идёт!!!» – раздаётся клич, и тут же дети разбегаются по кроватям, накрываются одеялами и закрывают глаза. Вернувшаяся вожатая чуть не плачет от умиления – какие же у неё в отряде примерные детки.

Вот и квантовый вакуум – казалось бы, абсолютная пустота. В которой ничего нет. Но на самом деле там постоянный кавардак, и в каждой точке триллион миллиардов раз в секунду рождаются и аннигилируют пары виртуальных частиц! Учёные назвали этот механизм флуктуациями квантового вакуума или просто квантовыми флуктуациями.

(Слово «флуктуация» тоже латинское, и означает «колебание, отклонение, волнообразное движение».)

«Они настоящие!!!»

Сперва физики считали, что квантовый вакуум, квантовые флуктуации и виртуальные частицы – это чистой воды выдумка, игра ума, просто удобная математическая модель для вычислений. Что в реальности виртуальных частиц не существует, что виртуальный фотон или электрон никогда не сможет превратиться в настоящий, проявить реальное наблюдаемое со стороны действие. Но в 1948 году голландский физик Хендрик Казимир сделал очень важное открытие.

Если в вакууме разместить две отполированные параллельные пластины – причём очень близко – тогда внутри пространства между ними квантовых флуктуаций будет происходить меньше, чем снаружи. И тогда «из ничего», «из вакуума», образуется сила, которая будет притягивать пластины друг к другу! Учёные обрадовались – у них появилась возможность произвести критический эксперимент, то есть понять, являются ли виртуальные частицы чисто виртуальными «формулами на бумажке», или же они всё-таки реальны?

В 1958 году опыт был поставлен. Эффект Казимира действительно существовал! Виртуальные частицы оказались реальностью! Они были настоящими!!! Казавшийся абсолютно пустым вакуум («ничто») оказался буквально «под завязку» нашпигован энергией!

Три синих озера малинового цвета

Но можно ли эту энергию из вакуума каким-то образом «достать», «извлечь»? На помощь пришла астрономия. В 1973 году советские учёные Алексей Старобинский и Яков Зельдович предсказали, что энергию из квантового вакуума могут извлекать особенные звёзды, а именно вращающиеся чёрные дыры!

Идея советских исследователей очень понравилась английскому физику-теоретику Стивену Хокингу – и в 1975 году он снабдил её математическим аппаратом, произвёл расчёты и показал, что «выжимать» вакуум могут любые чёрные дыры (а не только те, которые вращаются). Открытое новое излучение назвали излучением Хокинга.

Стивен Хокинг на обложке журнала "Лучик", № 9, 2021 год

Стивен Хокинг на обложке журнала "Лучик", № 9, 2021 год

Как возникает излучение Хокинга от чёрной дыры? Вы, наверное, читали или слышали, что чёрная дыра – это звезда, гравитационные силы которой настолько огромны, что ничто – даже свет! – не может от этой звезды «убежать». Чёрная дыра потому и называется чёрная – что она реально чёрная, чернее самой чёрной черноты. И вдруг – от такой вот дыры – излучение? Но как?! Этого же не может быть...

Ну да. В обычной физике такого быть не может. Но в квантовой – сколько угодно (в какой по счёту раз мы это повторяем?).

У каждой чёрной дыры существует граница, «рубеж, из-за которого нет возврата», который в физике называется горизонтом событий. Всё, что неосторожно попадает под горизонт событий, безжалостно засасывается колоссальным притяжением чёрной дыры, «попадает в сингулярность».

Но чёрную дыру окружает квантовый вакуум, в котором постоянно происходят флуктуации, то есть рождение пар виртуальных частиц. Как мы уже говорили, существуют эти частицы ничтожно малое время. Время-то ничтожно малое, практически неуловимое – но и движутся наши частицы со скоростью света! Поэтому за то самое ничтожное время могут успеть пролететь весьма солидное расстояние – порядка нескольких сантиметров. А этого, оказывается, вполне достаточно для того, чтобы случилось самое удивительное на свете...

Если пара частиц возникла вблизи горизонта событий, то в движении одна из двух частиц может случайно провалиться под горизонт. А вторая – остаться над горизонтом. Тогда первую частицу «засосёт в сингулярность», а вторая полетит в окружающее пространство! И с точки зрения стороннего наблюдателя это будет выглядеть, как рождение чёрной дырой частицы.

А поскольку виртуальные пары частиц в квантовом вакууме рождаются постоянно (повторим: триллион миллиардов раз в секунду), то в итоге получается самое настоящее излучение! У которого есть температура!

Расчёты показывают, что чем массивнее чёрная дыра – тем холоднее её излучение Хокинга. Скажем, чёрная дыра массой в шесть масс Солнца будет «нагреваться» до температуры всего лишь в одну стомиллионную долю градуса. Но если чёрная дыра будет меньшей массы?

Оказывается, чёрная дыра массой в два миллиона раз легче массы нашей Земли из-за излучения Хокинга приобрела бы температуру около 7200 градусов, то есть чёрная дыра была бы раскалённой добела!

«Этого не может быть потому что этого не может быть никогда» (как писал помещик Семи-Булатов в рассказе А.П. Чехова «Письмо к учёному соседу»), однако, друзья мои, это квантовая физика.

И чёрная дыра ослепительно-белого цвета, чёрная дыра ярче Солнца, «три синих-синих озера малинового цвета» – да пожалуйста, сколько хотите. Более того, в процессе излучения такая «мини-чёрная дыра» теряет массу, «испаряется» всё быстрее и быстрее, и, в конце концов, взрывается, выбрасывая энергию, сравнимую со взрывом примерно 1 миллиона водородных бомб!

Кстати, взрыв в 1 миллион водородных бомб (мощностью, скажем, в 1 мегатонну каждая) – это звучит страшно и пугающе... для Земли и людей. А вот для космоса такой взрыв – это так, «мыльный пузырь лопнул», пустячок, имейте в виду.

Полный бензобак пустоты, пожалуйста!

Тем не менее, взрыв – это выделение энергии. А что, если эту энергию получится «обуздать», скажем, как у людей получилось с атомной энергией? Во всяком случае, теоретически создать «чёрно-дырную электростанцию», генератор электричества или даже ракетный двигатель, работающий на «микро чёрных дырах», вполне реально. И уже во многих фантастических рассказах и видеоиграх в том или ином виде можно встретить «сингулярный реактор», «генератор сингулярности», который как раз извлекает «скрытую энергию вакуума» из чёрных дыр сверхмалой массы. Фантастика? Конечно. Однако в науке бывает и так, что рано или поздно фантастика превращается в реальность.

Сколько весит пустота, и сколько энергии в нигде?

Напоследок – страшная тайна и настоящая научная загадка. Многие думают, что наукой раскрыты уже все-все-все тайны природы, что «все важные открытия уже сделаны», и осталось только «уточнить некоторые детали». Так вот, это не так. И одна из самых «кричащих» загадок современной науки – это количество энергии, скрытой внутри вакуума.

Квантовый вакуум содержит энергию – это, надеемся, вы уже поняли. Но сколько именно её внутри?

С одной стороны, энергию в вакууме можно оценить по астрономическим наблюдениям – и они дают значение примерно в 1 джоуль на кубический километр. Подставим это значение в самую знаменитую формулу Эйнштейна (да-да, та самая «е равно эм цэ квадрат»), и получим эквивалентную плотность вакуума: она равняется примерно 1.1 килограмма на 1 миллиард кубических километров.

Вы можете усмехнуться – мало! Вот и нет. Для масштабов космоса это очень большая цифра! Скажем, куб вакуума со стороной, равной расстоянию от Земли до Луны, при такой ничтожной плотности будет весить... примерно 60 тонн! Вот мы и «взвесили пустоту».

И снова загадки...

Но вот в чём загвоздка. Дело в том, что количество энергии вакуума можно посчитать другим путём, теоретически, по обычным формулам квантовой физики из учебника... И вот тут у нас начинается, как говорил капитан Врунгель, «непоправимый скандал»: по формулам это значение оказывается совершенно другим – порядка 10 в 113-й степени джоулей на 1 кубический метр. То есть значение, которое предсказывает теория, и значение, которое наблюдается на практике (в природе), отличаются в...

триллион триллионов триллионов триллионов триллионов триллионов триллионов триллионов триллионов триллионов раз!

Это число, у которого впереди единица, а за ней – сто двадцать нулей. Ничего себе ошибочка! Вот это погрешность! Проблема эта называется «проблемой космологической постоянной», и это одна из самых болезненных нерешённых проблем современной физики. Настоящая жгучая тайна! И какие открытия нам и вообще мировой науке обещает решение этой загадки – трудно даже вообразить. Не желаете ли заняться?

Читайте также:

Как возникла квантовая физика и для чего она нужна?

Показать полностью 14
480
Серия Занимательная физика

Как устроить взрыв в кухонной раковине?

Начнём с теории! Громкость звука (или, как говорят физики, уровень звукового давления) измеряется в децибелах. Напряженная тишина в классе во время контрольной – это 40 децибел. Топот и вопли в школьном коридоре на переменке – 90 децибел...

Кстати, самым громким в мире голосом обладает учительница начальных классов из Ирландии Анна-Лиза Флэнаган (на фото). На всемирном конкурсе она сумела крикнуть с громкостью 121.7 децибел. Самое забавное, что для постановки рекорда она прокричала в измерительный микрофон слово «тихо». Разумеется, по-английски: «Quiet!».

Таким образом, Анна-Лиза в одиночку перекричала большой симфонический оркестр, максимальная громкость которого составляет 120 децибел. Громче – только рёв авиадвигателя – 130 децибел... А дальше?

Можно ли вообще получить звук громкостью в 250 децибел? Или в 1000 децибел? Оказывается, нет!

Звуковую волну в принципе нельзя «разогнать» до сколь угодно большой силы (амплитуды), потому в какой-то момент она исчезает, точнее, превращается в совершенно другую волну – а именно волну ударную (многие называют её «взрывной волной»).

Громкость звуковой волны зависит от скорости движения молекул воздуха, и как только эта скорость превысит скорость звука, мы получим уже не звуковую, а ударную волну.

Превратить звуковую волну в ударную у нас с вами вряд ли выйдет (для этого нужно ОЧЕНЬ много энергии, да и опасно это). А вот для того, чтобы увидеть своими глазами обратный процесс – как ударная волна при взрыве вырождается в звуковую, – можно провести очень простой и красивый физический опыт. Его легко сделать, например, в ванной или на кухне.

Направьте на дно ванны или раковины узкую, но сильную струю воды — и увидите, что сперва вода растекается идеально гладким слоем, образующим правильный круг, а затем от этого круга начинает расходиться рябь из больших и маленьких волн. В чём дело?

Пока скорость воды высокая, образуется гладкая поверхность — в нашем опыте это и будет аналогом ударной волны. Но скорость воды падает, и, начиная с определенной границы, по воде начинают расходиться волны — в нашем опыте это будет аналогом звуковой волны (ударная волна вырождается в звуковую).

Обратите внимание: граница между гладким и волнистым участком очень ровная и чёткая, потому и называется она (при движении молекул воздуха) «звуковым барьером». Можно (условно) сказать, что внутри круга вода течёт со «сверхзвуковой» скоростью, а вне круга – с «дозвуковой».

Показать полностью 4
390

Квантовая физика на пальцах. Рассказывает журнал «Лучик»

Многим кажется, что квантовая физика это какая-то заумь. А между тем слове «квантовый» нет ровным счётом ничего страшного.

Все процессы, явления и величины в окружающем нас мире можно разделить на две группы: непрерывные (по-научному континуальные) и прерывные (по-научному дискретные или квантованные).

Представьте себе стол, на который можно положить книгу. Вы можете положить книгу в любое место на столе. Справа, слева, посередине... Куда хотите – туда и положите. В этом случае физики говорят, что положение книги на столе изменяется непрерывно.

А теперь представьте книжные полки. Вы можете поставить книгу на первую полку, на вторую, на третью или на четвёртую – однако не можете поставить книгу «где-то между третьей и четвёртой». В этом случае положение книги изменяется прерывно, дискретно, квантовано (все эти слова обозначают одно и то же).

Окружающий мир полон непрерывных и квантованных величин. Вот горка на детской площадке. Дети скатываются с неё вниз – и их местоположение изменяется плавно, непрерывно. Теперь представьте себе, что эта горка вдруг (взмах волшебной палочки!) превратилась в лестницу. Скатиться с неё на попе уже не выйдет. Придётся идти ногами – сперва один шаг, потом второй, потом третий. Величина (высота) у нас изменялась непрерывно – а стала изменяться шагами, то есть дискретно, квантованно.

Давайте проверим!

1. Сосед по даче Иван Иванович отправился в соседнюю деревню и сказал «отдохну где-нибудь по дороге».

2. Сосед по даче Иван Иванович отправился в соседнюю деревню и сказал «поеду каким-нибудь автобусом».Какая из этих двух ситуаций («систем») может считаться непрерывной, а какая – квантованной?

Ответ: в первом случае Иван Иванович идёт пешком и может остановиться отдохнуть в абсолютно любой точке. Значит, данная система – непрерывная.Во втором – Иван Иванович может сесть в подошедший на остановку автобус. Может пропустить и подождать следующего автобуса. Но вот сесть «где-то между» автобусами у него не получится. Значит, данная система – квантованная!

Во всём виновата астрономия

О существовании непрерывных (континуальных) и прерывных (квантованных, разрывных, дискретных) величин прекрасно знали ещё древние греки. В своей книге «Псаммит» («Исчисление песчинок») Архимед даже сделал первую попытку установить математическую связь между непрерывными и квантованными величинами.

Тем не менее, никакой квантовой физики в те времена не существовало. Её не существовало вплоть до самого начала 20 века. Такие великие физики, как Галилей, Декарт, Ньютон, Фарадей, Юнг или Максвелл слыхом не слыхивали ни про какую квантовую физику и прекрасно без неё обходились.

Вы можете спросить: зачем же тогда учёные придумали квантовую физику? Что такое особенное в физике приключилось? Представьте себе, приключилось. Только совсем не в физике, а в астрономии!

Загадочный спутник

В 1844 году немецкий астроном Фридрих Бессель наблюдал самую яркую звезду нашего ночного неба – Сириус. К тому времени астрономы уже знали, что звёзды в нашем небе не являются неподвижными – они движутся, только очень-очень медленно. При этом каждая звезда – это важно! – движется по прямой линии. Так вот, при наблюдениях Сириуса оказалось, что он движется совсем не по прямой. Звезду как бы «шатало» то в одну сторону, то в другую. Путь Сириуса в небе был похож на извилистую линию, которую математики называют «синусоида».

Звезда Сириус и её спутник - Сириус Б

Звезда Сириус и её спутник - Сириус Б

Было понятно, что сама по себе звезда так двигаться не может. Чтобы превратить движение по прямой линии в движение по синусоиде, нужна некая «возмущающая сила». Поэтому Бессель предположил, что вокруг Сириуса вращается тяжёлый спутник – это было самое естественное и разумное объяснение.

Однако расчёты показывали, что масса этого спутника должна быть приблизительно как у нашего с вами Солнца. Тогда почему же мы не видим этот спутник с Земли? Сириус расположен от солнечной системы недалеко – каких-то два с половиной парсека, и объект размером с Солнце должен быть виден очень хорошо...

Трудная получалась задачка. Одни учёные говорили, что этот спутник представляет собой холодную, остывшую звезду – поэтому она абсолютно чёрная и невидима с нашей планеты. Другие говорили, что этот спутник не чёрный, а прозрачный, – потому мы его и не видим. Астрономы всего мира смотрели на Сириус в телескопы и пытались «поймать» загадочный невидимый спутник, а он как будто издевался над ними. Было от чего удивиться, сами понимаете...

В такой телескоп люди впервые увидели спутник Сириуса

В такой телескоп люди впервые увидели спутник Сириуса

И надежды астрономов блестяще оправдались – в первую же ночь неуловимый спутник Сириуса, предсказанный Бесселем, был обнаружен.

Однако, получив данные наблюдений Кларка, астрономы радовались совсем недолго. Ведь, согласно расчётам, масса спутника должна быть приблизительно такая же, как у нашего Солнца (в 333 000 раз больше массы Земли). Но вместо огромного чёрного (или прозрачного) небесного светила астрономы увидели... крохотную белую звёздочку!

Эта звёздочка была очень горячей (25 000 градусов, сравните с 5 500 градусами нашего Солнышка) и одновременно крохотной (по космическим меркам), размерами не больше Земли (впоследствии такие звёзды назвали «белыми карликами»). Получалось, что у этой звёздочки совершенно невообразимая плотность. Из какого же она тогда состоит вещества?!

На Земле мы знаем материалы с высокой плотностью – скажем, это свинец (кубик со стороной в сантиметр, сделанный из этого металла, весит 11.3 грамма) или золото (19.3 грамма на кубический сантиметр). Плотность вещества спутника Сириуса (его назвали «Сириус Б») составляет миллион (!!!) граммов на кубический сантиметр – оно в 52 тысячи раз тяжелее золота! Возьмём, например, обычный спичечный коробок. Его объём – 28 кубических сантиметров. Значит, спичечный коробок, наполненный веществом спутника Сириуса, будет весить... 28 тонн! Попробуйте представить – на одной чашке весов спичечный коробок, а на второй – танк!

Была ещё одна проблема. В физике есть закон, который называется законом Шарля. Он утверждает, что в одном и том же объёме давление вещества тем выше, чем выше температура этого вещества. Вспомните, как срывает давлением горячего пара крышку с закипевшего чайника – и сразу поймёте, о чём речь. Так вот, температура вещества спутника Сириуса этот самый закон Шарля нарушала самым бессовестным образом! Давление было невообразимым, а температура – относительно низкой.

В итоге получались «неправильные» физические законы и вообще «неправильная» физика. Как у Винни-Пуха – «неправильные пчёлы и неправильный мёд».

Голова кругом...

Чтобы «спасти» физику, в начале 20 века учёным пришлось признать, что в мире существует сразу ДВЕ физики – одна «классическая», известная уже две тысячи лет. А вторая – необычная, квантовая. Учёные предположили, что на обычном, «макроскопическом» уровне нашего мира работают законы классической физики. А вот на самом маленьком, «микроскопическом» уровне вещество и энергия подчиняются совершенно другим законам – квантовым.

Представьте себе нашу планету Земля. Вокруг неё сейчас вращается больше 15 000 самых разных искусственных объектов, каждый по своей орбите. Причём эту орбиту при желании можно поменять (скорректировать) – скажем, периодически корректируется орбита у Международной космической станции (МКС). Это макроскопический уровень, здесь работают законы классической физики (например, законы Ньютона).

А теперь перенесёмся на микроскопический уровень. Представьте себе ядро атома. Вокруг него, подобно спутникам, вращаются электроны – однако их не может быть сколь угодно много (скажем, у атома гелия – не больше двух). И орбиты у электронов будут уже не произвольные, а квантованные, «ступенчатые». Такие орбиты физики ещё называют «разрешёнными энергетическими уровнями». Электрон не может «плавно» перейти с одного разрешённого уровня на другой, он может только мгновенно «перепрыгнуть» с уровня на уровень. Только что был «там», и мгновенно оказался «тут». Он не может оказаться где-то между «там» и «тут». Он меняет местоположение мгновенно.

Удивительно? Удивительно! Но это ещё не всё. Дело в том, что, по законам квантовой физики, два одинаковых электрона не могут занимать один и тот же энергетический уровень. Никогда. Учёные называют это явление «запрет Паули» (почему этот «запрет» действует, они пока объяснить не могут). Больше всего этот «запрет» напоминает шахматную доску, – если на клетке доски стоит пешка, другую пешку на эту клетку уже не поставить. В точности то же самое происходит с электронами!

Решение задачи

Каким же образом – спросите вы – квантовая физика позволяет объяснять такие необычные явления, как нарушение закона Шарля внутри Сириуса Б? А вот каким.

Представьте себе городской парк, в котором есть танцевальная площадка. На улице гуляет много людей, они заходят на танцплощадку потанцевать. Пусть количество людей на улице обозначает давление, а количество людей на дискотеке – температуру. На танцплощадку может зайти огромное количество народу, – чем больше людей гуляет в парке, тем больше людей танцует на танцплощадке, то есть чем выше давление, тем выше температура. Так работают законы классической физики – в том числе закон Шарля. Такое вещество учёные называют «идеальным газом».

Люди на танцплощадке – «идеальный газ»

Люди на танцплощадке – «идеальный газ»

Однако на микроскопическом уровне законы классической физики не работают. Там начинают действовать квантовые законы, и это коренным образом меняет ситуацию.

Представим себе, что на месте танцплощадки в парке открыли кафе. В чём разница? Да в том, что в кафе, в отличие от дискотеки, «сколько угодно» людей не войдёт. Как только будут заняты все места за столиками, охрана прекратит пропускать людей внутрь. И пока кто-то из гостей не освободит столик, охрана никого не впустит! В парке гуляет всё больше и больше народу – а в кафе сколько людей было, столько и осталось. Получается, давление увеличивается, а температура «стоит на месте».

Внутри Сириуса Б, само собой, никаких людей, танцплощадок и кафе нет. Но принцип остаётся всё тот же: электроны заполняют все разрешенные энергетические уровни (как посетители – столики в кафе), и дальше никого «пустить» уже не могут – в точности согласно запрету Паули. В итоге внутри звезды получается невообразимо огромное давление, а вот температура при этом – высокая, но для звёзд вполне себе обыкновенная. Такое вещество в физике называется «вырожденным квантовым газом».

Продолжим?..

Аномально высокая плотность белых карликов – далеко не единственное явление в физике, требующее использования квантовых законов. Но пока давайте запомним главное:

1. В нашем с вами мире (Вселенной) на макроскопическом (т. е. «большом») уровне действуют законы классической физики. Они описывают свойства обычных жидкостей и газов, движения звёзд и планет и многое другое. Именно эту физику вы изучаете (или будете изучать) в школе.

2. Однако на микроскопическом (то есть невероятно маленьком, в миллионы раз меньше самых мелких бактерий) уровне действуют совершенно другие законы – законы квантовой физики. Законы эти описываются очень сложными математическими формулами, и в школе их не изучают.

Однако только квантовая физика позволяет относительно внятно объяснить строение таких удивительных космических объектов, как белые карлики (вроде Сириуса Б), нейтронные звёзды, чёрные дыры и так далее.

Это была статья из журнала «Лучик». В нём мы рассказываем:

  • Зачем человеку совесть?

  • Что такое тавтология и экстраполяция?

  • Как видят животные и растения?

  • Как Рим стал империей и отчего распался?

  • Отчего случаются войны?

  • Как кроманьонцы одолели неандертальцев?

Познакомиться с журналом можно по ссылке.

Показать полностью 7
805

Что такое радиация? Рассказывает журнал «Лучик»

Разговор о радиации следует начинать с понятия «стабильность». Это слово происходит от латинского «стабилис», и означает «постоянство», «устойчивость». Всё существующее в нашей Вселенной состоит из элементарных частиц, причём эти частицы могут быть стабильными и нестабильными. Стабильные частицы существуют «всегда», они (почти) вечны и могут жить бесконечно долго. Но таких частиц немного, всего семь: это протон, антипротон, электрон, позитрон, фотон, нейтрино и антинейтрино. А что же остальные элементарные частицы (их, кстати говоря, открыто более 300)?

А остальные – нестабильны, то есть живут очень недолго. Вот, например, нейтрон. Эта частица в свободном состоянии нестабильна – то есть существует в среднем около 15 минут. А что происходит с нею дальше? А дальше нейтрон распадается на протон, электрон и антинейтрино!

Тут, кстати, обратите внимание: мы говорим об атомной физике. А у атомной (ядерной, квантовой) физики законы совершенно другие, не такие, к каким мы привыкли в «обыкновенном» мире. Мы можем, например, разбить керамическую копилку с монетками – но можем и склеить осколки этой копилки и сложить монетки обратно. Можем разломать игрушечную машину на запчасти, но можем и собрать её из тех же запчастей снова. В атомной физике всё не так!

Учёные застенчиво говорят «распадается», но правильнее говорить превращается. Потому что, если «распадается», то можно подумать, что нейтрон изначально состоит из протона, электрона и антинейтрино. Или что «собрав» вместе протон, электрон и антинейтрино (как детали конструктора), мы сможем получить нейтрон. НЕТ!

Нейтрон – это нейтрон. Он не состоит из протона, электрона и антинейтрино. Их нет в нём! Но в какой-то момент нейтрон вдруг (просто так, сам по себе, без какого-то «толчка снаружи») превращается (именно по-настоящему превращается, как в сказке!) в разлетающиеся протон, электрон и антинейтрино...

Ну представьте себе – купили вы в магазине мяч. А он через 15 минут превратился – сам по себе! – в набор фломастеров, роликовые коньки и щенка ризеншнауцера. Неплохо?

В мире элементарных частиц такое происходит каждый день и каждую секунду. Потому что 15 минут жизни свободного нейтрона – это очень много, это нестабильная частица-долгожитель. Остальные живут совсем маленькое время – скажем, частица, которая называется «мюон» (или «мю-мезон»), живёт около 2 миллионных долей секунды. А, например, «пион» (он же «пи-мезон») живёт ещё в 100 раз меньше мюона – то есть 2 стомиллионные доли секунды (0.02 микросекунды)! А что происходит с пионом дальше? А дальше он распадается, то есть превращается в какие-то другие частицы. Например, в мюон и мюонное нейтрино – хотя бывают и другие варианты.

В общем, в атомной физике, в микромире, «стабильность» – штука довольно редкая. В отличие от нашего «большого» макромира, в котором утюг – это всегда утюг, а слон – это всегда слон, в микромире всё постоянно изменяется, всё превращается во всё – утюги в пироги, а слоны в мышей и наоборот. И нестабильность (то есть «переменчивость») в природе встречается гораздо чаще стабильности («устойчивости»). Как говорят профессора-физики студентам, «удивительно не то, что во Вселенной существуют нестабильные частицы. Гораздо удивительнее то, что в ней вообще существуют частицы стабильные!».

Однако перейдём (как в компьютерной игре) на новый уровень. Из элементарных частиц, как из кубиков в лего или в майнкрафте, можно создавать атомы разных простых веществ. Например, сложили протон и электрон – вот вам атом водорода. Сложили два протона, два нейтрона и два электрона – и вот вам атом гелия, того самого, которым надувают летучие воздушные шары на праздник.

Строение атома гелия. Два протона и два нейтрона (образующие ядро) и два электрона

Строение атома гелия. Два протона и два нейтрона (образующие ядро) и два электрона

Так же образуются кислород, которым мы дышим, азот, который так любят растения (в виде удобрений), драгоценные золото и серебро, а также все-все-все прочие вещества.

«Но погодите! – скажете вы. – Если те частицы, из которых собираются атомы, могут быть стабильными и нестабильными, тогда и сами атомы тоже могут быть стабильными и нестабильными?»

Совершенно верно! Атомы вещества – и, главное, сами вещества! – тоже могут быть нестабильными, да ещё как!

Вот, скажем, углерод – тот самый уголь, на котором мы жарим шашлык. Казалось бы, уголёк – он и в Африке уголёк, но нет! Оказывается, у него есть целых 15 разновидностей, «вариантов». Учёные называют такие варианты «изотопами» и обозначают цифрой сбоку. Самый распространённый в природе углерод – это «углерод-12», или С 12, и этот углерод стабильный. Он может существовать миллионы и миллиарды лет.

Но есть и «другие углероды», другие изотопы. Например, углерод-14. В отличие от обычного углерода, он нестабилен – сам по себе он медленно распадается, то есть превращается в азот! Если мы возьмём 1 килограмм углерода-14 и просто положим на полочку, то через 5700 лет (приблизительно) углерода останется только полкило! А вторая половина – превратится в газ азот и улетит...

Изотопы углерода. Слева две стабильные разновидности. Справа нестабильная!

Изотопы углерода. Слева две стабильные разновидности. Справа нестабильная!

А вот железо. Из которого мы делаем гвозди и мотоциклы. Оно тоже бывает нестабильным! В природе существует целых 34 (!) изотопа железа. Из которых стабильными являются только четыре! Привычное нам железо, из которого делают гвозди, и которое содержится в гемоглобине, придающем нашей крови красный цвет, – это изотоп, который называется «железо-56». Он может существовать очень долго. А, например, нестабильный изотоп «железо-55» из медицинских рентгеновских установок довольно быстро (половина примерно за 3 года) превращается в другой металл – марганец. Более тяжёлое вещество превращается в более лёгкое.

Само собой, одно вещество превратиться в другое «просто так» не может. Всё-таки закон сохранения вещества-энергии никто не отменял – «ничто не появляется из ничего и не исчезает в никуда». А это значит, что для превращения нестабильное вещество должно каким-то образом терять массу (и энергию). То есть должно испускать какое-то излучение!

Именно это излучение мы и называем «радиация», а нестабильные разновидности веществ часто называют «радиоактивные изотопы».

Вообще, слово «радиация» (которое в переводе с латинского и означает «излучение») – это бытовой термин. Радиация может быть очень разной «по составу». Скажем, уже знакомый нам углерод-14 испускает бета-излучение, то есть поток электронов (просто электрон физики довольно часто называют «бета-частицей»). А вот железо-55 – это источник рентгеновского излучения, то есть фотонов с высокой энергией, именно поэтому этот изотоп применяется в медицине.

А вот другое вещество – уран. В отличие от углерода, железа или других «лёгких» элементов у этого металла вообще нет ни одного стабильного изотопа! Все 36 природных «разновидностей» урана распадаются (превращаются) – одни быстрее (минуты и секунды), другие медленнее (сутки, годы и даже миллионы и миллиарды лет). Кусок природного урана испускает три вида излучения – гамма-излучение (фотоны с очень высокой энергией), бета-излучение (свободные электроны) и альфа-излучение. Частица альфа-излучения – это ядро гелия, собранные вместе 2 протона и 2 нейтрона.

Насколько опасна радиация?
Наверное, после прочитанного вы уже догадываетесь о том, что радиоактивные изотопы есть абсолютно у всех веществ в природе. Например, мы знаем из разных телепередач про здоровый образ жизни, что бананы богаты микроэлементом калием, и поэтому очень полезны. Но калий – это всегда смесь разных изотопов. И стабильных калия-39 и калия-41, и нестабильного (то есть радиоактивного!) калия-40. Поэтому каждый съеденный вами банан радиоактивен, хотите вы этого или нет. Однако доза радиации, которую вы при этом получаете, совершенно ничтожна. Чтобы «умереть от банановой радиации», вам придётся очень быстро съесть... примерно 50 миллионов бананов! Трудновато будет...

Радиоактивное излучение в природе есть всегда и везде – это нормально. Радиацию излучаем вы, я, деревья, дома, вода, воздух, солёные огурчики, экран компьютера или телевизора. И ничего страшного в этом нет. Но вот когда радиации становится очень много – вот тогда беда и уже ничего смешного. Разогнанная до высокой скорости частичка радиации (альфа-частица, гамма-квант, электрон, нейтрон), попадая в организм, «врезается» в молекулы и разрушает их. Особенно опасны в этом отношении альфа-частицы, самые массивные... Одна частица – это, конечно, пустяки, никто не заметит. Но если она не одна?

Вон она полетела, альфа-частица, узнали её? Всё то же ядро гелия – два протона и два нейтрона...

Вон она полетела, альфа-частица, узнали её? Всё то же ядро гелия – два протона и два нейтрона...

Скажите, можно ли из ружья разрушить прочную каменную стену? «Ха-ха-ха»? Однако давайте представим, что таких пуль не десятки, не сотни и не тысячи, а триллионы. Или даже квадриллионы! Одна пуля делает в каменной стене небольшую царапинку, выщербинку, почти незаметную глазом. Но если бы таких пуль было невероятно много – они бы стёрли каменную стену в порошок. Напрягите воображение – и поймёте, как это может быть.

Точно так же действует и радиация в больших дозах. Невидимые глазу частицы разрушают наши клетки, безжалостно разрывают на куски молекулы белков и нуклеиновых кислот (ДНК и РНК). Навсегда ломается механизм наследственности, клетки прекращают нормально размножаться, органы постепенно перестают работать. Раковые опухоли, бесплодие, мутации, внутренние кровотечения, тяжёлые ожоги – чем больше полученная организмом доза радиации, тем страшнее опасность. Именно поэтому радиацию часто называют «невидимым убийцей».

Можно ли остановить радиацию?
Ещё раз напоминаем – «радиация» это понятие очень расплывчатое. Радиация – это смесь альфа-излучения (то есть ядер гелия), бета-излучения (то есть электронов), нейтронного излучения (нейтронов) и гамма-излучения (то есть фотонов). Скажем, альфа-частицы сами по себе крайне опасны, но обладают очень небольшой проникающей способностью – поток альфа-частиц можно спокойно тормознуть защитными перчатками или даже листом плотной бумаги. Так что «невозможно остановить», о котором пишет Валерий – не про альфа-частицы точно. Альфа-излучение может стать смертельным для человека, если нечаянно наглотаться или надышаться радиоактивной пыли – вместе с водой, едой или воздухом. Но обычный защитный костюм и противогаз (или респиратор) эту опасность вполне устраняют.

Бета-излучение – то есть свободные электроны – является более «пробивным». Однако и с ним вполне способен справиться защитный слой из стекла или алюминия. Главное – не проглотить источник бета-излучения и не допустить его попадания на незащищённую кожу.

Ещё более опасно нейтронное излучение – однако от него хорошо помогает защититься слой воды.

Самым сильным проникающим действием обладает гамма-излучение – чтобы защититься от него, нужен слой из тяжелых металлов (стали, свинца и т. д.), земли или бетона. Тут уже сложнее: сами понимаете, мы можем построить для людей подземное убежище от радиации с многослойными стенами – но вот сшить из свинца или бетона «костюм для прогулок» уже проблематично...

(На заглавном фото статьи человек держит в руках (в перчатках!) кусок обогащённого урана, используемого в качестве топлива для атомных электростанций. Для этого годятся только изотопы урана 235, но в природном уране их очень мало. Чтобы использовать уран в качестве топлива, нужно довести долю урана 235 в нём до 3–5%, то есть "обогатить". Это делают на специальных "заводах", оборудованных специальными установками – высокоскоростными аэродинамическими центрифугами. Больше половины таких заводов, существующих в мире, находятся у нас в России.)

Но всё-таки на Земле радиацию можно ослабить и победить. Не верите – спросите у людей, которые десятилетиями работают на атомных электростанциях.

Почему до сих пор никто не полетел на Марс
Другое дело – космос. Построить космический корабль с толстыми стенками из воды, бетона и свинца – а сколько же такой корабль будет весить и как такой запускать? А тонкие металлические стенки от космической радиации защищают очень плохо. Космическая радиация, то есть невидимые потоки излучения от Солнца и звёзд, пока является непреодолимым препятствием для организации полёта человека на Марс.

Мы (по крайней мере, в теории) уже сейчас вполне можем построить космический корабль для полёта к Марсу, можем придумать систему снабжения космонавтов воздухом, едой и водой, но вот защитить людей от космического излучения пока не получается. Расчёты безжалостно показывают – за время путешествия к Марсу, нахождения на Марсе и обратного полёта к Земле космонавты получат дозу радиации, несовместимую с жизнью. Так что проблема есть – и решать её придётся учёным и инженерам будущего... Интересно, справятся ли они?

Напоследок – самое интересное
Как мы с вами уже поняли, в нашей Вселенной существуют как стабильные, так и нестабильные частицы; как стабильные, так и нестабильные (они же – радиоактивные) вещества. И вот тут учёные, проведя тщательные подсчёты, выяснили удивительнейшую вещь.

Оказывается, баланс между «стабильностью» и «нестабильностью» во Вселенной невероятно тонкий, буквально как попытка пройти по лезвию ножа. Если бы определённые параметры (как говорят физики, «фундаментальные постоянные») отличались от тех, которые есть, хотя бы на один-два процентика, нашей Вселенной... не было бы!

В ней или царила бы «полная нестабильность», когда всевещества неизбежно распадаются – и не возникло бы никаких планет, никаких сложных молекул типа аминокислот или белков, не возникло бы жизни. Или, наоборот, случилась бы «полная стабильность», в которой невозможны ядерные реакции, в которой не зажглись бы звёзды, не сформировались бы галактики...

Говорите, непонятно, как во Вселенной случайно возникла жизнь? Современные учёные говорят, что им всё больше непонятно, как случайно получилась наша Вселенная...

Показать полностью 7
Отличная работа, все прочитано!