Часть 1 Осторожно, длиннопост и сложнотекст)
Земные станции системы Требование доступа к информационным ресурсам определяет выбор местоположения ЦС сети в Московском регионе, где стоимость интернет-трафика минимальна благодаря присутствию узлов высокого уровня. Число необходимых приемо-передающих станций определяется наличием достаточного частотного ресурса в диапазоне частот, выбранном для организации фидерной линии от ЦС к КА. В рассматриваемой системе, как показано выше, полосы частот Ku-диапазона оказывается достаточно для организации как абонентских, так и фидерных линий, поэтому для каждого работающего КА достаточно одной центральной станции. С целью упрощения конструкции бортового ретранслятора для создания фидерной радиолинии использован один из лучей многолучевой зоны обслуживания, а именно луч № 2, охватывающий Московский регион.
Еще одна особенность рассматриваемой системы связи – использование в каждый момент времени двух космических аппаратов: одного, находящегося на основном витке, и другого, проходящего сопряженный виток. Очевидно, для каждого направления должна использоваться своя собственная приемо-передающая станция, поэтому число ЦС удваивается. Угловое расстояние между обоими КА значительное, поэтому станции могут находиться на одной площадке без опасности причинения взаимных помех.
Вопрос наличия на рынке подходящих абонентских терминалов и в первую очередь антенн для них является ключевым для продвижения всех НГСС, в том числе систем на ВЭО. Перевод сервиса связи с подвижными объектами и непосредственного вещания из низкочастотных L- и S-диапазонов в Ku-диапазон имеет наряду с существенным экономическим выигрышем [10] и негативный аспект, связанный с усложнением абонентского оборудования. В Ku-диапазоне пространственная избирательность антенн значительно выше, чем, например, в L-диапазоне, поэтому даже маленькая антенна для приема звукового вещания диаметром 25 см в фиксированном положении не обеспечит прием сигнала со спутника при его движении по орбите. Из сказанного ясна необходимость периодической подстройки направления излучения антенны в процессе работы.
Антенны, следящие за спутником, давно применяются в системах подвижной связи, чаще всего военного назначения. В качестве таковых используются малогабаритные зеркальные антенны с механическим приводом, причем для уменьшения высоты конструкции вырезка из параболы делается не круговой, а вытянутой в горизонтальном направлении. В последние годы вместо параболического зеркала начинают применять фазированные антенные решетки (ФАР), устанавливая антенное полотно прямоугольной формы на такой же механический двухкоординатный привод. Основным недостатком антенн с механическим приводом является их недостаточно высокая надежность: наработка на отказ не превышает нескольких тысяч часов. Относительно высока и стоимость таких антенн, начиная от $8–10 тыс. и до нескольких десятков тысяч долларов США. Эти факторы препятствуют широкому коммерческому использованию антенн данного типа.
В качестве возможной альтернативы рассматриваются антенны с электронным управлением лучом, не содержащие механических подвижных частей. Теория таких антенн существует уже несколько десятилетий [11], известны применения в радиолокационной технике, в последние годы более десятка зарубежных компаний ведут разработки антенн с электронным управлением для применения в спутниковой связи. Определенным стимулом для этих работ послужило появление проектов многоспутниковых низкоорбитальных систем, работа абонентских терминалов которых требует наличия недорогих антенн, способных постоянно следить за быстро перемещающимися спутниками. Такая же антенна наилучшим образом подходит для системы связи с высокоэллиптическими спутниками, особенно для абонентских терминалов, устанавливаемых на подвижных платформах, где к перемещениям спутника добавляются еще собственные эволюции транспортного средства.
Основные требования, предъявляемые к антенне с электронным сканированием луча [12]: угол сканирования, достаточный для слежения за спутником; усиление, достаточное для обеспечения требуемого бюджета радиолинии; низкая цена; низкий профиль; высокая надежность и удобство эксплуатации.
На сегодняшний день именно цена является главным препятствием к массовому использованию подобных антенн. Первые изделия продаются компаниями Kymeta, Phasor, GetSat по цене $25–40 тыс., хотя все разработчики утверждают, что готовы в перспективе снизить цену до уровня менее $1000. Что же является препятствием для снижения цены?
Из теории известно, что необходимое число парциальных излучателей в решетке пропорционально произведению необходимого конического угла сканирования Ω и коэффициента направленного действия антенны D [12]:
На рис. 6 показаны зависимости числа излучателей N от необходимого угла отклонения луча θ при трех значениях D [12]. Нетрудно видеть, что для стационарной антенны, работающей через КА “Экспресс-РВ”, угол слежения которой определяется только угловым перемещением КА, достаточно решетки с числом элементов менее 200 (предполагается, что плоскость антенны ориентирована перпендикулярно направлению на спутник). Если же антенна с эквивалентным размером 60 см устанавливается на автомобиле, который передвигается, например, в Подмосковье (угол места на КА “Экспресс-РВ” порядка 58 град.) по дороге не очень хорошего качества, требуемый угол сканирования может составлять ±50 град., а число элементов ФАР – порядка 1200.
Оценим теперь возможную стоимость такой антенны. В первом приближении она равна стоимости одного парциального излучателя (“патча”) с его каналом управления, умноженной на число элементов. Для традиционных аналоговых ФАР с фазовращателями в канале управления стоимость одного канала не удалось снизить ниже $10 [12, 13]. Качественный скачок произошел в последние три-четыре года, когда удалось реализовать концепцию цифровой ФАР. В такой фазированной решетке сигналы, принятые отдельными элементами, переводятся в цифровую форму (непосредственно на частоте приема или на высокой промежуточной частоте) и далее все операции управления амплитудой и фазой для формирования луча осуществляются в цифровой форме в специализированной СБИС, обрабатывающей сигналы всех или значительной части каналов. Перенос сигналов по частоте также осуществляется в специализированных ИС, обслуживающих небольшое число каналов. Аналогичные операции производятся и на передающей стороне. Так работает, например, антенна компании SatixFy [14]. По некоторым оценкам, стоимость одного канала в такой конфигурации составляет $2, тогда цена антенны с 1200 элементами может опуститься до $2500. Сегодняшние предельно высокие цены на сканирующие антенны объясняются желанием компаний-разработчиков окупить значительные средства, затраченные на разработку специализированных СБИС (порядка $20 млн на одну микросхему). Как только потребности рынка достигнут значительных объемов (100 тыс. изделий в год и более), цены существенно снизятся и тогда можно ожидать обещанных $1 тыс. и менее. Можно предположить, что такой спрос возникнет в ближайшие два-три года, когда выйдут на стадию реализации какие-то из заявленных низкоорбитальных систем. Это дает основания полагать, что к ожидаемому моменту запуска КА “Экспресс-РВ” (2022–2023 гг.) появится возможность приобретения недорогих антенн с электронным сканированием.
Специфические особенности передачи сигналов через спутники на ВЭО Использование многоспутниковой группировки на ВЭО ставит ряд задач, не встречающихся при эксплуатации ГСО спутников. Сюда можно отнести следующие: компенсация эффекта Доплера; возможность “бесшовного” переключения сигнала при переходе со спутника на спутник и из луча в луч; устранение или сокращение длительности перерыва при переключении антенны ЦС.
Величина доплеровского смещения частоты пропорциональна скорости изменения наклонной дальности. На рис. 7 в качестве примера приведена расчетная зависимость доплеровского сдвига от времени сеанса для Санкт-Петербурга на частоте 14 ГГц. Можно видеть, что зависимость имеет почти линейный характер. Если сравнить величины сдвига для различных лучей, различия составят не более 7–8%. Смещение оказывается различным также на разных частотах и изменяется от примерно ±60 кГц на частоте 11 ГГц до ±80 кГц на частоте 15 ГГц. Компенсация доплеровского сдвига должна осуществляться в аппаратуре центральной и абонентской станции протокольными или аппаратными средствами.
Для обеспечения “бесшовного” перехода со спутника на спутник используется процедура эстафетной передачи обслуживания (Handover). Эта задача является специфической для негеостационарных орбит, в частности для ВЭО. Рассмотрим возможные пути ее решения. Ситуация похожа на Handover в сотовой связи, когда мобильный абонентский терминал переходит из зоны одной базовой станции (БС) в зону другой. Там проблема решается наличием двух трактов, принимающих сигналы от двух БС на разных частотах, решение о переходе принимается путем сравнения качества сигналов от каждой из БС. Применительно к спутниковой связи это означало бы необходимость различных частотных планов у сменяющих друг друга КА, что совершенно невозможно ввиду практически полного использования частотного ресурса Ku-диапазона в системе “Экспресс-РВ”.
Второй возможный путь переключения абонента со спутника на спутник – разделение процессов по времени. В идеализированной изомаршрутной группировке точки КРУ для уходящего спутника и НРУ для приходящего спутника практически совпадают в пространстве и во времени. Если в момент схождения спутников одномоментно выключить уходящий и включить приходящий спутник, то абонентская станция не увидит перерыва. К сожалению, в реальной системе не удастся поддерживать изомаршрутность в течение САС со столь высокой точностью, могут не совпадать и точки НРУ и КРУ двух соседних спутников, и моменты прихода КА в эти точки. Угловое расстояние между спутниками будет уменьшаться, достигнет некоторого минимума, а затем снова начнет увеличиваться. В этой ситуации, очевидно, понадобятся две антенны и два комплекта оборудования на ЦС, работающие каждый по своему спутнику. Разумеется, на абонентской ЗС такое удвоение объема оборудования недопустимо, поэтому система поддержания параметров орбиты должна обеспечить угловое схождение спутников до величины, которая меньше половины ШДН антенны абонентской станции. Для принятого в анализе значения эквивалентного диаметра апертуры 0,6– 0,7 м это означает угловое расстояние в 1,3–1,5 град.
На практике необходимо принять во внимание невозможность строго одномоментного выключения всех стволов одного КА и включения стволов другого, неизбежна некоторая задержка по времени, зависящая от алгоритма работы командно-измерительной системы и конструкции БРТК. Следствием такой задержки будет кратковременное пропадание сигнала на абонентской ЗС, которое может привести, а может и не привести к срыву синхронизации модема. Попытка включить приходящий КА с упреждением, до выключения уходящего, также не дает желаемого результата, так как сигналы с двух спутников, принятые одновременно абонентской ЗС, из-за некогерентности будут давить друг друга и все равно приведут к срыву приема. Этот вопрос требует дополнительного исследования с использованием сведений о работе БРТК и реальных характеристик модемов. Может оказаться, что в реальных условиях никаким способом не удастся обеспечить безобрывную работу модема, в этом случае возможно допущение перерывов, оговариваемых в технической документации. Для многих коммерческих приложений предсказуемый по времени и длительности перерыв в течение нескольких секунд за шестичасовой сеанс не выходит за рамки требований по надежности связи с коэффициентом готовности 0,9993. Допущение перерывов позволяет значительно упростить требования к ЦС и снизить капитальные затраты на станцию. В частности, возможно использование только одной антенны и одного комплекта приемо-передающего оборудования. В этом случае антенна за время регламентированного перерыва должна успеть перестроиться с уходящего на приходящий КА. Полагая минимальный угловой разнос между ними равным 1,5 град. и скорость поворота 0,4 град./с (типовое значение для антенны диаметром 7 м), получим время перестройки порядка 4 с.
Опубликовано: Специальный выпуск "Спутниковая связь и вещание"-2019
Автор: Борис Локшин. Начальник отдела перспективных системных
разработок ФГУП “Космическая связь", д.т.н.